46 research outputs found

    Solvent Induced Proton Hopping at a Water-Oxide Interface

    Get PDF
    Despite widespread interest, a detailed understanding of the dynamics of proton transfer at interfaces is lacking. Here we use ab initio molecular dynamics to unravel the connection between interfacial water structure and proton transfer for the widely studied and experimentally well-characterized water-ZnO(101ˉ0)(10\bar{1}0) interface. We find that upon going from a single layer of adsorbed water to a liquid multilayer changes in the structure are accompanied by a dramatic increase in the proton transfer rate at the surface. We show how hydrogen bonding and rather specific hydrogen bond fluctuations at the interface are responsible for the change in the structure and proton transfer dynamics. The implications of this for the chemical reactivity and for the modelling of complex wet oxide interfaces in general are also discussed.Comment: 6 pages, 5 figure

    Second-Harmonic Scattering as a Probe of Structural Correlations in Liquids

    Get PDF
    Second-harmonic scattering experiments of water and other bulk molecular liquids have long been assumed to be insensitive to interactions between the molecules. The measured intensity is generally thought to arise from incoherent scattering due to individual molecules. We introduce a method to compute the second-harmonic scattering pattern of molecular liquids directly from atomistic computer simulations, which takes into account the coherent terms. We apply this approach to large-scale molecular dynamics simulations of liquid water, where we show that nanosecond second-harmonic scattering experiments contain a coherent contribution arising from radial and angular correlations on a length scale of < 1 nm, much shorter than had been recently hypothesized (Shelton, D. P. J. Chem. Phys. 2014, 141). By combining structural correlations from simulations with experimental data (Shelton, D. P. J. Chem. Phys. 2014, 141), we can also extract an effective molecular hyperpolarizability in the liquid phase. This work demonstrates that second-harmonic scattering experiments and atomistic simulations can be used in synergy to investigate the structure of complex liquids, solutions, and biomembranes, including the intrinsic intermolecular correlations

    Solvent Fluctuations and Nuclear Quantum Effects Modulate the Molecular Hyperpolarizability of Water

    Get PDF
    Second-Harmonic Scatteringh (SHS) experiments provide a unique approach to probe non-centrosymmetric environments in aqueous media, from bulk solutions to interfaces, living cells and tissue. A central assumption made in analyzing SHS experiments is that the each molecule scatters light according to a constant molecular hyperpolarizability tensor ÎČ(2)\boldsymbol{\beta}^{(2)}. Here, we investigate the dependence of the molecular hyperpolarizability of water on its environment and internal geometric distortions, in order to test the hypothesis of constant ÎČ(2)\boldsymbol{\beta}^{(2)}. We use quantum chemistry calculations of the hyperpolarizability of a molecule embedded in point-charge environments obtained from simulations of bulk water. We demonstrate that both the heterogeneity of the solvent configurations and the quantum mechanical fluctuations of the molecular geometry introduce large variations in the non-linear optical response of water. This finding has the potential to change the way SHS experiments are interpreted: in particular, isotopic differences between H2_2O and D2_2O could explain recent second-harmonic scattering observations. Finally, we show that a simple machine-learning framework can predict accurately the fluctuations of the molecular hyperpolarizability. This model accounts for the microscopic inhomogeneity of the solvent and represents a first step towards quantitative modelling of SHS experiments

    Connection between water's dynamical and structural properties: insights from ab initio simulations

    Full text link
    Among all fluids, water has always been of special concern for scientists from a broad variety of research fields due to its rich behavior. In particular, some questions remain unanswered nowadays concerning the temperature dependence of bulk and interfacial transport properties of supercooled and liquid water, e.g. regarding the fundamentals of the violation of the Stokes-Einstein relation in the supercooled regime or the subtle relation between structure and dynamical properties. Here we investigated the temperature dependence of the bulk transport properties from ab initio molecular dynamics based on density functional theory, down to the supercooled regime. We determined from a selection of functionals, that SCAN better describes the experimental viscosity and self-diffusion coefficient, although we found disagreements at the lowest temperatures. For a limited set of temperatures, we also explored the role of nuclear quantum effects on water dynamics using ab initio molecular dynamics that has been accelerated via a recently introduced machine learning approach. We then investigated the molecular mechanisms underlying the different functionals performance and assessed the validity of the Stokes-Einstein relation. We also explored the connection between structural properties and the transport coefficients, verifying the validity of the excess entropy scaling relations for all the functionals. These results pave the way to predict the transport coefficients from the radial distribution function, helping to develop better functionals. On this line, they indicate the importance of describing the long-range features of the radial distribution function.Comment: 10 pages, 5 figure

    Connection between water’s dynamical and structural properties: Insights from ab initio simulations

    Full text link
    Among all fluids, water has always been of special concern for scientists from a wide variety of research fields because of its rich behavior. In particular, some questions remain unanswered today regarding the temperature dependence of bulk and interfacial transport properties of supercooled and liquid water, for example, regarding the fundamentals of the violation of the Stokes–Einstein relation in the supercooled regime, or the subtle relation between structure and dynamical properties. We have studied the temperature dependence of the bulk transport properties from ab initio molecular dynamics based on density functional theory, down to the supercooled regime. We determined, from a selection of functionals, that the SCAN (strongly constrained and appropriately normed) functional best describes the experimental viscosity and self-diffusion coefficient, although we found disagreements at lower temperatures. For a limited set of temperatures, we also explored the role of nuclear quantum effects on water dynamics using ab initio molecular dynamics that was accelerated by a recently introduced machine learning approach. We then investigated the molecular mechanisms underlying the different functionals’ performance and assessed the validity of the Stokes–Einstein relation. We also explored the connection between structural properties and transport coefficients, verifying the validity of the excess entropy scaling relations for all functionals. These results pave the way for the prediction of the transport coefficients from the radial distribution function, thus helping to develop better functionals. In this respect, these results indicate the importance of describing the long-range features of the radial distribution function

    Impact of confinement and polarizability on dynamics of ionic liquids

    Full text link
    Polarizability is a key factor when it comes to an accurate description of different ionic systems. The general importance of including polarizability into molecular dynamics simulations was shown in various recent studies for a wide range of materials, ranging from proteins to water to complex ionic liquids and for solid–liquid interfaces. While most previous studies focused on bulk properties or static structure factors, this study investigates in more detail the importance of polarizable surfaces on the dynamics of a confined ionic liquid in graphitic slit pores, as evident in modern electrochemical capacitors or in catalytic processes. A recently developed polarizable force field using Drude oscillators is modified in order to describe a particular room temperature ionic liquid accurately and in agreement with recently published experimental results. Using the modified parameters, various confinements are investigated and differences between non-polarizable and polarizable surfaces are discussed. Upon introduction of surface polarizability, changes in the dipole orientation and in the density distribution of the anions and cations at the interface are observed and are also accompanied with a dramatic increase in the molecular diffusivity in the contact layer. Our results thus clearly underline the importance of considering not only the polarizability of the ionic liquid but also that of the surface

    ăƒˆăƒŒăƒžă‚čăƒ»ăƒžăƒłă€Žéžă°ă‚Œă—äșș』をèȘ­ă‚€ : ăƒšăƒŒăƒ­ăƒƒăƒ‘ăźäșș間惏

    Get PDF
    The interfaces of neat water and aqueous solutions play a prominent role in many technological processes and in the environment. Examples of aqueous interfaces are ultrathin water films that cover most hydrophilic surfaces under ambient relative humidities, the liquid/solid interface which drives many electrochemical reactions, and the liquid/vapor interface, which governs the uptake and release of trace gases by the oceans and cloud droplets. In this article we review some of the recent experimental and theoretical advances in our knowledge of the properties of aqueous interfaces and discuss open questions and gaps in our understanding

    Performance estimation and Variability from Random Dopant Fluctuations in Multi-Gate Field Effect Transistors : a Simulation Study

    No full text
    As the formation of nearly abrupt p-n junctions in aggressively scaled transistors has become a complex task, a novel type of device in which there are no junctions has recently been suggested (J. P. Colinge et al., Nature 2010). The device of interest is referred to as the junctionless transistor, and it has demonstrated excellent functionality, with the advantage of a simpler fabrication process than conventional FETs. Despite the remarkable performances exhibited by the junctionless transistor, this device has to be tested against variability before it may be produced in large scale. Hence, the study of how the fluctuations in the number and in the position of the dopant atoms affects a large number of devices has been developed in this work. Such variability source is referred to as Random Dopant Fluctuations (RDF) and it is among the most critical ones for conventional MOSFETs. Our view is that RDF ought to largely affect the junctionless transistors. Hence, in this work we mainly aim at investigating the impact of RDF in these type of devices. Firstly, we provide a detailed analysis on the performance of an ideal junctionless transistor with a uniform non-random doping concentration, by mean of simulations developed using a TCAD software. Secondly, we investigate the effects of RDF in the junctionless transistor, as the principal aim of our study. Here, we determine how the I-V characteristics are affected by the random dopants and we illustrate fundamental the causes of the variations. A first estimation of the impact of RDF is provided by the illustration of the threshold voltage and beta [1] distributions, and by the computation of the fundamental statistical quantities relating to the two parameters. A further and last estimation is provided by the comparison obtained studying RDF on the inversion mode FET
    corecore